machine-learning
  • 機器學習:使用Python
    • 簡介Scikit-learn 機器學習
  • 分類法 Classification
    • Ex 1: Recognizing hand-written digits
    • EX 2: Normal and Shrinkage Linear Discriminant Analysis for classification
    • EX 3: Plot classification probability
    • EX 4: Classifier Comparison
    • EX 5: Linear and Quadratic Discriminant Analysis with confidence ellipsoid
  • 特徵選擇 Feature Selection
    • Ex 1: Pipeline Anova SVM
    • Ex 2: Recursive Feature Elimination
    • Ex 3: Recursive Feature Elimination with Cross-Validation
    • Ex 4: Feature Selection using SelectFromModel
    • Ex 5: Test with permutations the significance of a classification score
    • Ex 6: Univariate Feature Selection
    • Ex 7: Comparison of F-test and mutual information
  • 互分解 Cross Decomposition
  • 通用範例 General Examples
    • Ex 1: Plotting Cross-Validated Predictions
    • Ex 2: Concatenating multiple feature extraction methods
    • Ex 3: Isotonic Regression
    • Ex 4: Imputing missing values before building an estimator
    • Ex 5: ROC Curve with Visualization API
    • Ex 7: Face completion with a multi-output estimators
  • 群聚法 Clustering
    • EX 1: Feature_agglomeration.md
    • EX 2: Mean-shift 群聚法.md
    • EX 6: 以群聚法切割錢幣影像.md
    • EX 10:_K-means群聚法
    • EX 12: Spectral clustering for image segmentation
    • Plot Hierarchical Clustering Dendrogram
  • 支持向量機
    • EX 1:Non_linear_SVM.md
    • [EX 4: SVM_with _custom _kernel.md](SVM/EX4_SVM_with _custom _kernel.md)
  • 機器學習資料集 Datasets
    • Ex 1: The digits 手寫數字辨識
    • Ex 2: Plot randomly generated classification dataset 分類數據集
    • Ex 3: The iris 鳶尾花資料集
    • Ex 4: Plot randomly generated multilabel dataset 多標籤數據集
  • 應用範例 Application
    • 用特徵臉及SVM進行人臉辨識實例
    • 維基百科主要的特徵向量
    • 波士頓房地產雲端評估(一)
    • 波士頓房地產雲端評估(二)
  • 類神經網路 Neural_Networks
    • Ex 1: Visualization of MLP weights on MNIST
    • Ex 2: Restricted Boltzmann Machine features for digit classification
    • Ex 3: Compare Stochastic learning strategies for MLPClassifier
    • Ex 4: Varying regularization in Multi-layer Perceptron
  • 決策樹 Decision_trees
    • Ex 1: Decision Tree Regression
    • Ex 2: Multi-output Decision Tree Regression
    • Ex 3: Plot the decision surface of a decision tree on the iris dataset
    • Ex 4: Understanding the decision tree structure
  • 機器學習:使用 NVIDIA JetsonTX2
    • 從零開始
    • 讓 TX2 動起來
    • 安裝OpenCV
    • 安裝TensorFlow
  • 廣義線性模型 Generalized Linear Models
    • Ex 3: SGD: Maximum margin separating hyperplane
  • 模型選擇 Model Selection
    • Ex 3: Plotting Validation Curves
    • Ex 4: Underfitting vs. Overfitting
  • 半監督式分類法 Semi-Supervised Classification
    • Ex 3: Label Propagation digits: Demonstrating performance
    • Ex 4: Label Propagation digits active learning
    • Decision boundary of label propagation versus SVM on the Iris dataset
  • Ensemble_methods
    • IsolationForest example
  • Miscellaneous_examples
    • Multilabel classification
  • Nearest_Neighbors
    • Nearest Neighbors Classification
Powered by GitBook
On this page
  • 模型選擇/範例3 : Plotting Validation Curves
  • 一、引入函式與模型
  • 二、建立dataset與模型
  • 三、作圖:Validation Curve
  • 四、原始碼列表

模型選擇 Model Selection

模型選擇/範例3 : Plotting Validation Curves

此範例的目的:

  • 分析SVM不同的kernel參數:gamma,擬合模型的情況

  • 經過圖示觀察不同gamma與擬合的結果

一、引入函式與模型

  • validation_curve用於展示某一個因子,在不同值的情況下所得的score。透過這個曲線,可以直觀地看出模型中不同的參數之擬合的情況

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.model_selection import validation_curve

二、建立dataset與模型

  • Dataset取自sklearn.datasets.load_digits,內容為0~9的手寫數字,共有1797筆

  • load_digits(return_X_y=True)回傳X為data,y為target

  • param_range為欲改變的因子:參數gamma的值域,由10的-6次方到10的-1次方之間取5個值作為不同的gamma

X, y = load_digits(return_X_y = True)
param_range = np.logspace(-6, -1, 5)
train_scores, test_scores = validation_curve(
    SVC(), X, y, param_name="gamma", param_range=param_range,
    scoring="accuracy", n_jobs=1)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

三、作圖:Validation Curve

  • plt.semilogx是將X軸改為對數比例

  • plt.fill_between將train/test scores的平均值與標準差之間的差距用顏色填滿

  • plt.legend為顯示每個數據相對應的圖例名稱,其中loc="best"為顯示圖例名稱的位置,best表示自動分配最佳位置

plt.title("Validation Curve with SVM")
plt.xlabel(r"$\gamma$")
plt.ylabel("Score")
plt.ylim(0.0, 1.1)
lw = 2
plt.semilogx(param_range, train_scores_mean, label="Training score",
             color="darkorange", lw=lw)
plt.fill_between(param_range, train_scores_mean - train_scores_std,
                 train_scores_mean + train_scores_std, alpha=0.2,
                 color="darkorange", lw=lw)
plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",
             color="navy", lw=lw)
plt.fill_between(param_range, test_scores_mean - test_scores_std,
                 test_scores_mean + test_scores_std, alpha=0.2,
                 color="navy", lw=lw)
plt.legend(loc="best")
plt.show()

由上圖的validation curve可以分析出以下三種結果:

  • 很小的gamma,training scores與validation scores都很低,稱為欠擬合underfitting

  • 很大的gamma,有好的training scores,但validation scores很低,稱為過擬合overfitting

  • 適當的gamma,training scores與validation scores都很高,則表示分類器的效果非常好

四、原始碼列表

Python source code: plot_validation_curve.py

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.model_selection import validation_curve

X, y = load_digits(return_X_y=True)

param_range = np.logspace(-6, -1, 5)
print(param_range)
train_scores, test_scores = validation_curve(
    SVC(), X, y, param_name="gamma", param_range=param_range,
    scoring="accuracy", n_jobs=1)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

plt.title("Validation Curve with SVM")
plt.xlabel(r"$\gamma$")
plt.ylabel("Score")
plt.ylim(0.0, 1.1)
lw = 2
plt.semilogx(param_range, train_scores_mean, label="Training score",
             color="darkorange", lw=lw)
plt.fill_between(param_range, train_scores_mean - train_scores_std,
                 train_scores_mean + train_scores_std, alpha=0.2,
                 color="darkorange", lw=lw)
plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",
             color="navy", lw=lw)
plt.fill_between(param_range, test_scores_mean - test_scores_std,
                 test_scores_mean + test_scores_std, alpha=0.2,
                 color="navy", lw=lw)
plt.legend(loc="best")
plt.show()
Previous廣義線性模型 Generalized Linear ModelsNextEx 4: Underfitting vs. Overfitting

Last updated 5 years ago

https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
png