"""==============Non-linear SVM==============Perform binary classification using non-linear SVCwith RBF kernel. The target to predict is a XOR of theinputs.The color map illustrates the decision function learned by the SVC."""print(__doc__)import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmxx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500))np.random.seed(0)X = np.random.randn(300, 2)Y = np.logical_xor(X[:, 0] >0, X[:, 1] >0)# fit the modelclf = svm.NuSVC()clf.fit(X, Y)# plot the decision function for each datapoint on the gridZ = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r)contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--')plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired, edgecolors='k')plt.xticks(())plt.yticks(())plt.axis([-3, 3, -3, 3])plt.show()