machine-learning
  • 機器學習:使用Python
    • 簡介Scikit-learn 機器學習
  • 分類法 Classification
    • Ex 1: Recognizing hand-written digits
    • EX 2: Normal and Shrinkage Linear Discriminant Analysis for classification
    • EX 3: Plot classification probability
    • EX 4: Classifier Comparison
    • EX 5: Linear and Quadratic Discriminant Analysis with confidence ellipsoid
  • 特徵選擇 Feature Selection
    • Ex 1: Pipeline Anova SVM
    • Ex 2: Recursive Feature Elimination
    • Ex 3: Recursive Feature Elimination with Cross-Validation
    • Ex 4: Feature Selection using SelectFromModel
    • Ex 5: Test with permutations the significance of a classification score
    • Ex 6: Univariate Feature Selection
    • Ex 7: Comparison of F-test and mutual information
  • 互分解 Cross Decomposition
  • 通用範例 General Examples
    • Ex 1: Plotting Cross-Validated Predictions
    • Ex 2: Concatenating multiple feature extraction methods
    • Ex 3: Isotonic Regression
    • Ex 4: Imputing missing values before building an estimator
    • Ex 5: ROC Curve with Visualization API
    • Ex 7: Face completion with a multi-output estimators
  • 群聚法 Clustering
    • EX 1: Feature_agglomeration.md
    • EX 2: Mean-shift 群聚法.md
    • EX 6: 以群聚法切割錢幣影像.md
    • EX 10:_K-means群聚法
    • EX 12: Spectral clustering for image segmentation
    • Plot Hierarchical Clustering Dendrogram
  • 支持向量機
    • EX 1:Non_linear_SVM.md
    • [EX 4: SVM_with _custom _kernel.md](SVM/EX4_SVM_with _custom _kernel.md)
  • 機器學習資料集 Datasets
    • Ex 1: The digits 手寫數字辨識
    • Ex 2: Plot randomly generated classification dataset 分類數據集
    • Ex 3: The iris 鳶尾花資料集
    • Ex 4: Plot randomly generated multilabel dataset 多標籤數據集
  • 應用範例 Application
    • 用特徵臉及SVM進行人臉辨識實例
    • 維基百科主要的特徵向量
    • 波士頓房地產雲端評估(一)
    • 波士頓房地產雲端評估(二)
  • 類神經網路 Neural_Networks
    • Ex 1: Visualization of MLP weights on MNIST
    • Ex 2: Restricted Boltzmann Machine features for digit classification
    • Ex 3: Compare Stochastic learning strategies for MLPClassifier
    • Ex 4: Varying regularization in Multi-layer Perceptron
  • 決策樹 Decision_trees
    • Ex 1: Decision Tree Regression
    • Ex 2: Multi-output Decision Tree Regression
    • Ex 3: Plot the decision surface of a decision tree on the iris dataset
    • Ex 4: Understanding the decision tree structure
  • 機器學習:使用 NVIDIA JetsonTX2
    • 從零開始
    • 讓 TX2 動起來
    • 安裝OpenCV
    • 安裝TensorFlow
  • 廣義線性模型 Generalized Linear Models
    • Ex 3: SGD: Maximum margin separating hyperplane
  • 模型選擇 Model Selection
    • Ex 3: Plotting Validation Curves
    • Ex 4: Underfitting vs. Overfitting
  • 半監督式分類法 Semi-Supervised Classification
    • Ex 3: Label Propagation digits: Demonstrating performance
    • Ex 4: Label Propagation digits active learning
    • Decision boundary of label propagation versus SVM on the Iris dataset
  • Ensemble_methods
    • IsolationForest example
  • Miscellaneous_examples
    • Multilabel classification
  • Nearest_Neighbors
    • Nearest Neighbors Classification
Powered by GitBook
On this page
  • (一)引入函式庫
  • (二)載入LFW人臉資料庫
  • (三)對於人臉資料計算PCA
  • (四)訓練SVM分類模型
  • (六)使用matplotlib對預測進行評估
  • Total Output:
  • (七)完整程式碼
  1. 應用範例 Application

用特徵臉及SVM進行人臉辨識實例

Previous應用範例 ApplicationNext維基百科主要的特徵向量

Last updated 5 years ago

本範例所使用的資料庫主要採集於LFW人臉資料庫

(233MB)

採取資料集中最具有代表性的人做預測,以下為預測結果:

(一)引入函式庫

引入函式庫如下: 1. time:計算時間 2. logging:具有除錯功能 3. matplotlib.pyplot:用來繪製影像 4. sklearn.model_selection import train_test_split:將資料集隨機分配成訓練集和測試集 5. sklearn.model_selection import GridSearchCV:搜索指定參數的估計值 6. sklearn.datasets import fetch_lfw_people:載入LFW人臉資料庫 7. sklearn.metrics import classification_report:建立文字報告,顯示主要的分類矩陣 8. sklearn.metrics import confusion_matrix:計算混淆矩陣以評估分類的準確性 9. sklearn.decomposition import PCA:進行主成分分析 10. sklearn.svm import SVC:載入用於分類的向量支持模型

(二)載入LFW人臉資料庫

將資料以numpy array形式存進lfw_people中, 其中min_faces_per_person=70指提取的數據集將僅保留具有至少70個不同圖片的人的圖片。

# 下載資料(如果並未下載於電腦中)

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

此範例中共有1288張影像,每張影像大小為62 x 47像素

# 查詢影像的大小(為了畫圖)
n_samples, h, w = lfw_people.images.shape

# 為了機器學習,我們直接使用這兩個資料(這個模型忽略了相對像素的位置信息)
X = lfw_people.data
n_features = X.shape[1]

# 要預測的標籤是該人的ID
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

將資料集隨機分配成訓練集和測試集

# 分成訓練集和測試集
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.25, random_state=42)

(三)對於人臉資料計算PCA

計算人臉資料集中的PCA(特徵臉),視為未標籤的資料:使用非監督式提取降維。

pca = PCA(n_components=n_components, svd_solver='randomized',
          whiten=True).fit(X_train)
  • svd_solver='randomized':用Halko方法運行隨機SVD

  • whiten=True:將components向量乘以n_samples的平方根並除以奇異值,以確保具有不相關的輸出。

n_components = 150
print("Extracting the top %d eigenfaces from %d faces"
      % (n_components, X_train.shape[0]))
t0 = time() #計時
pca = PCA(n_components=n_components, svd_solver='randomized',
          whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
#進行降維
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))

(四)訓練SVM分類模型

SVM模型有兩個非常重要的參數C與gamma。 C:懲罰係數,即對誤差的寬容度。c越高,說明越不能容忍出現誤差,容易過擬合。 gamma:選擇RBF函數作為kernel後,該函數自帶的一個參數。隱含地決定了數據映射到新的特徵空間後的分佈。

print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
              'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(
    SVC(kernel='rbf', class_weight='balanced'), param_grid
)
  • skernel='rbf':使用(高斯)徑向基函數

  • ```python
    clf = clf.fit(X_train_pca, y_train)
    print("done in %0.3fs" % (time() - t0))
    print("Best estimator found by grid search:")
    print(clf.best_estimator_)

    (五)對測試集中進行預測

使用y_pred = clf.predict(X_test_pca),對測試集進行預測。

print("Predicting people's names on the test set")
t0 = time()
#用最佳發現的參數對評估器進行預測。
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

(六)使用matplotlib對預測進行評估

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
    """為了畫出人像的函數"""
    plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
    for i in range(n_row * n_col):
        plt.subplot(n_row, n_col, i + 1)
        plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
        plt.title(titles[i], size=12)
        plt.xticks(())
        plt.yticks(())


# 在部分測試集中繪製預測結果
def title(y_pred, y_test, target_names, i):
    pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
    true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
    return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
                     for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

# 繪製最有意義的特徵臉
eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()

Total Output:

(七)完整程式碼

Python source code:plot_face_recognition.py

from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.svm import SVC




print(__doc__)

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')


# #############################################################################
# Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)


# #############################################################################
# Split into a training set and a test set using a stratified k fold

# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.25, random_state=42)


# #############################################################################
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
# dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print("Extracting the top %d eigenfaces from %d faces"
      % (n_components, X_train.shape[0]))
t0 = time()
pca = PCA(n_components=n_components, svd_solver='randomized',
          whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))


# #############################################################################
# Train a SVM classification model

print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
              'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(
    SVC(kernel='rbf', class_weight='balanced'), param_grid
)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)


# #############################################################################
# Quantitative evaluation of the model quality on the test set

print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))


# #############################################################################
# Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
    """Helper function to plot a gallery of portraits"""
    plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
    for i in range(n_row * n_col):
        plt.subplot(n_row, n_col, i + 1)
        plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
        plt.title(titles[i], size=12)
        plt.xticks(())
        plt.yticks(())


# plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
    pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
    true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
    return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
                     for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

# plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()

https://scikit-learn.org/stable/_downloads/fcbed4be5eadd64ee8f4961f64b1904c/plot_face_recognition.py
https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz