print(__doc__)# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org># License: BSD 3 clause# Standard scientific Python importsimport matplotlib.pyplot as plt# Import datasets, classifiers and performance metricsfrom sklearn import datasets, svm, metrics# The digits datasetdigits = datasets.load_digits()# The data that we are interested in is made of 8x8 images of digits, let's# have a look at the first 4 images, stored in the `images` attribute of the# dataset. If we were working from image files, we could load them using# matplotlib.pyplot.imread. Note that each image must have the same size. For these# images, we know which digit they represent: it is given in the 'target' of# the dataset.images_and_labels =list(zip(digits.images, digits.target))for index, (image, label) inenumerate(images_and_labels[:4]): plt.subplot(2, 4, index +1) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Training: %i'% label)# To apply a classifier on this data, we need to flatten the image, to# turn the data in a (samples, feature) matrix:n_samples =len(digits.images)data = digits.images.reshape((n_samples, -1))# Create a classifier: a support vector classifierclassifier = svm.SVC(gamma=0.001)# We learn the digits on the first half of the digitsclassifier.fit(data[:n_samples //2], digits.target[:n_samples //2])# Now predict the value of the digit on the second half:expected = digits.target[n_samples //2:]predicted = classifier.predict(data[n_samples //2:])print("Classification report for classifier %s:\n%s\n"% (classifier, metrics.classification_report(expected, predicted)))print("Confusion matrix:\n%s"% metrics.confusion_matrix(expected, predicted))images_and_predictions =list(zip(digits.images[n_samples //2:], predicted))for index, (image, prediction) inenumerate(images_and_predictions[:4]): plt.subplot(2, 4, index +5) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Prediction: %i'% prediction)plt.show()