Multilabel classification
Multi-Label(多標籤) vs Multi-Class(多分類) : -
一部電影可以分為普遍級、保護級、輔導級、限制級,那這部電影只會屬於其中一類,這就是 multi-class
一部電影可以同時有很多種的類型例如喜劇、劇情、浪漫等等,這就是 multi-label
範例 : - 模擬multi-label document(多標籤檔案)的分類問題,數據集是依照下面的方式隨機生成的:
pick the number of labels: n ~ Poisson(n_labels)
n times, choose a class c: c ~ Multinomial(theta)
pick the document length: k ~ Poisson(length)
k times, choose a word: w ~ Multinomial(theta_c)
Poisson distribution(帕松分布) : 適合於描述單位時間內隨機事件發生的次數的機率分布
Multinomial distribution(多項式分布) : 多項分布是二項分布的延伸。例如,二項分布的典型範例為扔硬幣,正面槽上的機率為p, 重複扔n次,k次為正面的機率即是一個二項分布的機率。把二項分布公式推廣到多種狀態,就得到多項式分布。
透過上面的方法,剔除採樣的目的是為了確保n(label數)可以大於2,而且文件的長度不等於0。同樣,也排除已經選過的類別。備標註為2種類別的檔案會以雙重顏色的圈圈表示。
為了進行可視化,藉由PCA (Principal Component Analysis 主成分分析) 和CCA (Canonical Correlation Analysis 典型相關分析) 找到前兩個主要成分將數據projecting(投影)後來執行分類。使用sklearn.multiclass.OneVsRestClassifier,metaclassifier(元分類器)使用兩個帶有線性內核的SVC來學習每個類別的discriminative model(判別模型)。
PCA用於執行unsupervised(無監督)的降維,而CCA用於執行supervised(監督)的降維。
(一)引入函式庫
numpy : 產生陣列數值
matplotlib.pyplot : 用來繪製影像
sklearn.datasets import make_multilabel_classification : 生成隨機的多標籤分類問題
sklearn.svm import SVC : 匯入Support Vector Classification
sklearn.decomposition import PCA : 匯入Principal Component Analysis
sklearn.cross_decomposition import CCA : 匯入Canonical Correlation Analysis
(二)定義繪製hyperplane函式
np.linspace() : 回傳指定區間內的相同間隔的數字
(三)定義繪製圖片函式
PCA(n_components=None, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None)
n_components : 要保留的成分數,此範例是保留2項
CCA(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)
n_components : 要保留的成分數,此範例是保留2項
scale : 是否縮放數據
OneVsRestClassifier(estimator, n_jobs=None): 一對一(OvR)的多類/多標籤策略
estimator : 估計對象,此範例使用SVC
(四)呼叫函式並輸出圖片
在圖中,“未標記樣本”並不意味著我們不知道標記(如在半監督學習中一樣),而是樣本根本沒有標記。

(五)完整程式碼
https://scikit-learn.org/stable/_downloads/39d4a835d597f9ae7842ba4a877fd5b1/plot_multilabel.py
Last updated