machine-learning
  • 機器學習:使用Python
    • 簡介Scikit-learn 機器學習
  • 分類法 Classification
    • Ex 1: Recognizing hand-written digits
    • EX 2: Normal and Shrinkage Linear Discriminant Analysis for classification
    • EX 3: Plot classification probability
    • EX 4: Classifier Comparison
    • EX 5: Linear and Quadratic Discriminant Analysis with confidence ellipsoid
  • 特徵選擇 Feature Selection
    • Ex 1: Pipeline Anova SVM
    • Ex 2: Recursive Feature Elimination
    • Ex 3: Recursive Feature Elimination with Cross-Validation
    • Ex 4: Feature Selection using SelectFromModel
    • Ex 5: Test with permutations the significance of a classification score
    • Ex 6: Univariate Feature Selection
    • Ex 7: Comparison of F-test and mutual information
  • 互分解 Cross Decomposition
  • 通用範例 General Examples
    • Ex 1: Plotting Cross-Validated Predictions
    • Ex 2: Concatenating multiple feature extraction methods
    • Ex 3: Isotonic Regression
    • Ex 4: Imputing missing values before building an estimator
    • Ex 5: ROC Curve with Visualization API
    • Ex 7: Face completion with a multi-output estimators
  • 群聚法 Clustering
    • EX 1: Feature_agglomeration.md
    • EX 2: Mean-shift 群聚法.md
    • EX 6: 以群聚法切割錢幣影像.md
    • EX 10:_K-means群聚法
    • EX 12: Spectral clustering for image segmentation
    • Plot Hierarchical Clustering Dendrogram
  • 支持向量機
    • EX 1:Non_linear_SVM.md
    • [EX 4: SVM_with _custom _kernel.md](SVM/EX4_SVM_with _custom _kernel.md)
  • 機器學習資料集 Datasets
    • Ex 1: The digits 手寫數字辨識
    • Ex 2: Plot randomly generated classification dataset 分類數據集
    • Ex 3: The iris 鳶尾花資料集
    • Ex 4: Plot randomly generated multilabel dataset 多標籤數據集
  • 應用範例 Application
    • 用特徵臉及SVM進行人臉辨識實例
    • 維基百科主要的特徵向量
    • 波士頓房地產雲端評估(一)
    • 波士頓房地產雲端評估(二)
  • 類神經網路 Neural_Networks
    • Ex 1: Visualization of MLP weights on MNIST
    • Ex 2: Restricted Boltzmann Machine features for digit classification
    • Ex 3: Compare Stochastic learning strategies for MLPClassifier
    • Ex 4: Varying regularization in Multi-layer Perceptron
  • 決策樹 Decision_trees
    • Ex 1: Decision Tree Regression
    • Ex 2: Multi-output Decision Tree Regression
    • Ex 3: Plot the decision surface of a decision tree on the iris dataset
    • Ex 4: Understanding the decision tree structure
  • 機器學習:使用 NVIDIA JetsonTX2
    • 從零開始
    • 讓 TX2 動起來
    • 安裝OpenCV
    • 安裝TensorFlow
  • 廣義線性模型 Generalized Linear Models
    • Ex 3: SGD: Maximum margin separating hyperplane
  • 模型選擇 Model Selection
    • Ex 3: Plotting Validation Curves
    • Ex 4: Underfitting vs. Overfitting
  • 半監督式分類法 Semi-Supervised Classification
    • Ex 3: Label Propagation digits: Demonstrating performance
    • Ex 4: Label Propagation digits active learning
    • Decision boundary of label propagation versus SVM on the Iris dataset
  • Ensemble_methods
    • IsolationForest example
  • Miscellaneous_examples
    • Multilabel classification
  • Nearest_Neighbors
    • Nearest Neighbors Classification
Powered by GitBook
On this page
  • (一)引入函式庫
  • (二)建立要被區分的重疊圓圈影像
  • (三)完整程式碼
  1. 群聚法 Clustering

EX 12: Spectral clustering for image segmentation

PreviousEX 10:_K-means群聚法NextPlot Hierarchical Clustering Dendrogram

Last updated 6 years ago

此範例是利用Spectral clustering來區別重疊的圓圈,將重疊的圓圈分為個體。

  1. 建立一個100x100的影像包含四個不同半徑的圓

  2. 透過np.indices改變影像顏色複雜度

  3. 用spectral_clustering區分出各個不同區域特徵

(一)引入函式庫

引入函式庫如下: 1. numpy:產生陣列數值 2. matplotlib.pyplot:用來繪製影像 3. sklearn.feature_extraction import image:將每個像素的梯度關係圖像化 4. sklearn.cluster import spectral_clustering:將影像正規化切割

import numpy as np
import matplotlib.pyplot as plt

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

(二)建立要被區分的重疊圓圈影像

  • 產生一個大小為輸入值得矩陣(此範例為100x100),其內部值為沿著座標方向遞增(如:0,1,...)的值。

l = 100
x, y = np.indices((l, l))
  • 建立四個圓圈的圓心座標並給定座標值

  • 給定四個圓圈的半徑長度

  • 將圓心座標與半徑結合產生四個圓圈圖像

center1 = (28, 24)
center2 = (40, 50)
center3 = (67, 58)
center4 = (24, 70)

radius1, radius2, radius3, radius4 = 16, 14, 15, 14

circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2
circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2
circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2
  • 將上一段產生的四個圓圈影像合併為img使其成為一體的物件

  • mask為布林形式的img

  • img為浮點數形式的img

  • 用亂數產生的方法將整張影像作亂數處理

# 4 circles
img = circle1 + circle2 + circle3 + circle4
mask = img.astype(bool)
img = img.astype(float)

img += 1 + 0.2 * np.random.randn(*img.shape)

接著將產生好的影像化為可使用spectral_clustering的影像

  • image.img_to_graph 用來處理邊緣的權重與每個像速間的梯度關聯有關

  • 用類似Voronoi Diagram演算法的概念來處理影像

graph = image.img_to_graph(img, mask=mask)

graph.data = np.exp(-graph.data / graph.data.std())

最後用spectral_clustering將連在一起的部分切開,而spectral_clustering中的各項參數設定如下:

  • graph: 必須是一個矩陣且大小為nxn的形式

  • n_clusters=4: 需要提取出的群集數

  • eigen_solver='arpack': 解特徵值的方式

開一張新影像label_im用來展示spectral_clustering切開後的分類結果

labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack')
label_im = -np.ones(mask.shape)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

(三)完整程式碼

Python source code:plot_segmentation_toy.py

print(__doc__)

# Authors:  Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
#           Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

###############################################################################
l = 100
x, y = np.indices((l, l))

center1 = (28, 24)
center2 = (40, 50)
center3 = (67, 58)
center4 = (24, 70)

radius1, radius2, radius3, radius4 = 16, 14, 15, 14

circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2
circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2
circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2

###############################################################################
# 4 circles
img = circle1 + circle2 + circle3 + circle4
mask = img.astype(bool)
img = img.astype(float)

img += 1 + 0.2 * np.random.randn(*img.shape)

# Convert the image into a graph with the value of the gradient on the
# edges.
graph = image.img_to_graph(img, mask=mask)

# Take a decreasing function of the gradient: we take it weakly
# dependent from the gradient the segmentation is close to a voronoi
graph.data = np.exp(-graph.data / graph.data.std())

# Force the solver to be arpack, since amg is numerically
# unstable on this example
labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack')
label_im = -np.ones(mask.shape)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

###############################################################################
# 2 circles
img = circle1 + circle2
mask = img.astype(bool)
img = img.astype(float)

img += 1 + 0.2 * np.random.randn(*img.shape)

graph = image.img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data / graph.data.std())

labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack')
label_im = -np.ones(mask.shape)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

plt.show()

http://scikit-learn.org/stable/auto_examples/cluster/plot_segmentation_toy.html
http://scikit-learn.org/stable/_downloads/plot_segmentation_toy.py