Ex 2: Recursive Feature Elimination
(一)產生內建的數字辨識資料
# Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target(二)以疊代方式計算模型
# Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)(三)畫出每個像素所對應的權重順序

(四)原始碼
Last updated