https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html#sphx-glr-auto-examples-cluster-plot-mean-shift-py
此範例展示一種強建的特徵空間分析法
(一)引入函式庫
引入函式如下:
matplotlib.pyplot : 用來繪製影像
sklearn.cluster import MeanShift, estimate_bandwidth : MeanShift:發現樣本的平滑密度中的點 ; estimate_bandwidth:計算要用於maen-shift演算法的頻寬
sklearn.datasets.samples_generator import make_blobs : 產生用於clustering的等向高斯分布點
itertools import cycle : 產生一個迭代器,對迭代器中的元素反覆執行
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets.samples_generator import make_blobs
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)
根據提供的3個中心點,產生各10000個等向高斯的點
(二)Clustering
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
print("number of estimated clusters : %d" % n_clusters_)
estimate_bandwidth 算出的 bandwidth 會用來作為提供 RBF krenel 的參數,用在 MeanShift 的 bandwidth 參數裡面 RBF kernel : 主要用於線性不可分的情形,將資料投射到更高維的空間,讓其變得可以線性分割 做聚集後就可得各類別的中心點,以及各點的label
# Plot result
import matplotlib.pyplot as plt
from itertools import cycle
plt.figure(1)
plt.clf()
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
my_members = labels == k
cluster_center = cluster_centers[k]
plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=14)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
colors : 在這用作圖形顏色切換 plt.plot(X[my_members, 0], X[my_members, 1], col + '.') : 畫出個別label的點 plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,markeredgecolor='k', markersize=14) : 畫出個別label的中心 最後秀出結果圖
(三)完整程式碼
Python source code:plot_mean_shift.py
https://scikit-learn.org/stable/_downloads/plot_mean_shift.py
"""
=============================================
A demo of the mean-shift clustering algorithm
=============================================
Reference:
Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward
feature space analysis". IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2002. pp. 603-619.
"""
print(__doc__)
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets.samples_generator import make_blobs
# #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)
# #############################################################################
# Compute clustering with MeanShift
# The following bandwidth can be automatically detected using
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
print("number of estimated clusters : %d" % n_clusters_)
# #############################################################################
# Plot result
import matplotlib.pyplot as plt
from itertools import cycle
plt.figure(1)
plt.clf()
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
my_members = labels == k
cluster_center = cluster_centers[k]
plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=14)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()